
(LECTURE 6)

Limitations of Finite Automata



Limitations of FAs

Problem: Is there any set not regular ?           

ans: yes!

example:  B = {anbn | n  0 } = {e,ab,aabb,aaabbb,…}

Intuition: Any machine accepting B must be able to 
remember the number of a’s  it has scanned before 
encountering the first b, but this requires infinite amount of 
memory (states) and is beyond the capability of any FA , 
which has only a finite amount of  memory (states).



The proof

Lemma 1: Let M = (Q, S, d, s, F) be any DFA accepting B. Then for 
all non-negative numbers m, n , m n implies D(s, am)  D(s, an).

pf:  Assume D(s, am) = D(s, an) from some m  n.  Then  D(s, ambn) = 
D( D(s, am), bn) 

= D( D(s, an), bn)   = D(s, an bn)F
It implies ambn L(M) = B. But ambn  B since m  n. Hence D(s, am) 
 D(s, an) for all m n.

Theorem: B is not regular.
Pf: Assume B is regular and accepted by some DFA M with k states.
But by Lemma1, M must have an infinite number of states (
since all D(s, am)Q (m = 0,1,2,…) must be distinct.). This contradicts 

the requirement that the state set Q of M is finite.



Another nonregular set

 C= {a2n | n > 0} = {a, aa, aaaa, aaaaaaaa, … } is nonregular
pf: assume C is regular and is accepted by a DFA with k states.
Let n > k and x = a2n  C. Now consider the sequence of states: D(s,a), 
D(s,aa),…., D(s,an),    
s – a – s1 – a – s2 – …   si – a – si+1 – a… -- si+d -- a -- … -- sn.

by pigeonhole principle, there are 0<i<i+d  n s.t. 
D(s,ai) = D(s,ai+d)  [ = p] 

let 2n = i + d + m.
=> D(s, a2n+d) = D(s, aiadadam) = D(s,aiadam) = D(s, a2n)  F.
But  since 2n + d < 2n + n < 2n+2n = 2 n+1, which is the next power of 2 
> 2n, Hence a2n+d  C 

=> the DFA also accepts  a string ∉ C,   a contradiction!
Hence C is not regular.



Intuition behind the Pumping Lemma for FA

 For an FA to accept a long string s ( its number of states),  the visited path for 
s must contains a cycle and hence can be cut or repeated to accept also many 
new strings.

cut

repeat



The pumping lemma

Theorem 11.1: If A is a regular set, then

(P):  $ k > 0 s.t. for any string xyz  A with |y|  k,

there exists a decomposition y = uvw s.t.

v  eand for all i  0,  the string xuviwz  A.
pf: Similar to the previous examples. Let k = |Q| where Q is the set of states in a DFA 

accepting A. Also let s and F be the initial and set of final states of  the FA, respectively. 
Now if there is a string xyz  A with |y|  k, consider the sequence of states:

D(s,xy0), D(s, xy1), D(s,xy2), … D(s, xyk),

where yj (j = 0..k) denote the prefix of y of the first j symbols. Since there are k+1 items in 
the sequence, each a state in Q, by pigeonhole principle, there must exist  two items D(s, 
xym), D(s, xyn) corresponding to the same state.  Without loss of generality, assume m < 
n. Now let u = ym, yn = u v and y= uvw. 

We thus have D(s, xuwz) = D(s, xym wz)   = D(s, xynwz) = D(s, xuvwz)  F

Likewise, for all j > 1, D(s, xuvjwz) = D(xuv vj-1 wz) = D(xuvj-1 wz) = …   = D(xuvj-2 wz) = … 
=D(s,xuvwz)  F.  QED



The pumping lemma

Theorem 11.1: Let A be any language. If A is a regular, then
(P):  $ k > 0 s.t. for any string xyz  A with |y|  k,

there exist a decomposition y = uvw s.t.
v  eand for all i  0,  the string xuviwz  A.

Theorem 11.2 (pumping lemma, the contropositive form)
If A is  any language satisfying the property (~P):
k> 0 $ xyz  A s.t. |y|  k and u,v,w with uvw = y and v  e, 
there exists an i  0 s.t. xuvivw  A,

then A is not regular.  [ ~P means 
for any k > 0, there is a substring of length ≥ k [of a member] of A, a 

cut or a certain duplicates of the middle of any 3-segment 
decomposition of which will produce a string �  A.  ]



Game semantics for quantification

1. Two players: 
 You (want to show a theorem T holds)

 Demon (the opponent want to show T does not hold)

 rules: If the game (or proposition) G is
 x:U, F   ==> D pick a member a of U and continue the game F(a).

 x:U, F ==> Y choose a nmember b of U and continue the game F(b).

 if G has no quantification then end.

 Result: 
 Y win if the resulting proposition holds

 D wins o/w

 T holds if Y has a winning strategy (always wins).



Examples

 Show that  (x:nat,  y:nat,  x < y ).

pf:

D: choose any number k for x.

Y: let  y be k + 1

Result: k < k+1 , so Y wins.

Since Y always wins in this game. The result is proved.

The winning strategy is the function : k |-> k+1.

 Show that (x:nat,  y:nat,  y < x ).

pf:  D: pick number 0 for x

Y:  either fail or 

pick a number m for y.

D wins since ~( 0 < m). 

Hence the statement is not proved.



Game-theoretical proof of non regularity of a set

1. Two players: 
 You (want to show that ~P holds and A is not regular)

 Demon (the opponent want to show that P holds)

2 The game proceeds as follows:

1. D picks a k> 0    (if A is regular, D’s best strategy is to pick k =

#states of a FA accepting A)

2. Y picks x,y,x with xyz  A and |y|  k.

3. D picks u,v,w s.t. y = uvw and v  e.
4. Y picks i  0

3. Finally Y wins if xuviwz  A and  D wins if xuviwz  A.

4. By Theorem 11.2, A is not regular if there is a winning strategy 
according to which Y always win.

Note: P is a necessary but not a sufficient condition for the regularity of A (i.e., 
there is nonregular set A satisfying P).



Using the pumping lemma

 Ex1: Show the set A = {anbm | n  m } is not regular.

the proof:
 1. D gives k     [for any k > 0]

 2. Y pick x = ak, y = bk, z = e [$ xyz in A with |y|  k]

 ==> xyz = akbk  A

 3. D decompose y = uvw with  [for all uvw with uvw=y and

 |u|=j, |v|=m > 0 and |w|= n      v  e]

 4. Y take i = 2. [$ i  0  s.t.  xuviwz  A]

 => xuv2wz = akbjb2mbn = akbk+m  A

 => Y wins. Hence A is not regular.

 Ex2: C = {an! | n  0 } is not regular.

pf: similar to Ex1. Left as an exercise.

hint: for any k > 0 D chooses, let xyz =akxk! ak! eand let i = 0.



Other techniques:

 Using closure property of regular sets.

Ex3: D = { x  {a,b}* | #a(x) = #b(x) }

= {e, ab, ba, aabb, abab. baba, bbaa, abba, baab,… }

is not regular.  (Why ?)

if regular => D  a*b* = {anbn | n  0 } = B is regular.

But B is not regular,  D thus is not regular.

 [H2E2:] A: any language; if A is regular, then 

rev(A) =def {xnxn-1…x1 | x1x2…xn  A} is regular. 

 Ex4: A = {anbm | m  n } is not regular.

pf: If A is regular =>  rev(A) and h((rev(A)) = {anbm | n  m} is regular, where 
h(a) = b and h(b) = a.

=> A  h(rev(A)) = {anbn | n  0} is regular, a contradiction!  


